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Abstract

In complex electromagnetic environments, the identification
and differentiation of diverse radio frequency (RF) emitters
become particularly crucial. Existing RF fingerprinting meth-
ods demonstrate limitations when dealing with numerous un-
known emitters, making it challenging for accurate classifi-
cation and recognition. These limitations hinder the effective
handling of specific unknown emitters. To address this issue,
we introduce a novel RF fingerprinting method suitable for
open-world conditions for the first time. We develop a novel
RF fingerprinting model, Roinformer, to extract signal fea-
tures with positional attention. We then leverage data aug-
mentation strategies such as noise jitter and signal frame rear-
rangement to construct an effective pre-training model. More-
over, by incorporating instance-level similarity loss and a
novel local entropy regularization approach, we significantly
enhance the accuracy of known class identification and miti-
gate the catastrophic forgetting of known signal samples. Ex-
perimental results on three temporal signal datasets demon-
strate that our method effectively recognizes both the known
and unknown classes, outperforming several state-of-the-art
methods by a large margin.

Code — https://github.com/ShuaS2020/OpenRFI

Introduction
With the rapid advancement of wireless communication
technologies, the Internet of Things (IoT) and associated
sensor technologies also see significant progress. In recent
years, the extensive deployment of IoT devices provides
technological support for applications in smart homes, intel-
ligent transportation systems, and smart cities. However, due
to the openness of wireless communication channels, these
devices are often exposed to threats of unauthorized access
and communication security. To address these concerns, ra-
dio frequency fingerprint identification (RFFI) technology
emerges, offering a novel solution.

RFFI technology enhances the security (Zhang et al.
2021) of wireless communication systems by analyzing
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Figure 1: Illustration of open-world RFFI task. In this
scenario, unlabeled samples contain RF fingerprint signals
emitted by both known and unknown emitters. The objec-
tive is to identify RF fingerprint signals from known emit-
ters while simultaneously discovering and recognizing sig-
nals from unknown emitters within the unlabeled samples.

unique characteristics carried by wireless signals during
transmission for device identification and authentication.
These fingerprints, unintentional by-products of hardware
imperfections, are closely associated with the devices and
exhibit a high degree of uniqueness, making them difficult
to replicate or forge (Baldini and Steri 2017). Thus, radio
frequency fingerprints serve as effective and unique identi-
fiers for wireless device authentication.

Alongside continuous advancements in computer technol-
ogy, deep learning-based RFFI methods (Hua et al. 2018;
Liu et al. 2019; Polak and Goeckel 2015; Deng et al. 2023;
Shen et al. 2023) significantly improve identification per-
formance. Nevertheless, in complex and dynamic electro-
magnetic environments, the emergence of unknown emitters
challenges the applicability of models trained on known de-
vice signal distributions. As shown in Fig. 1, to address this,
some studies introduce RFFI techniques in open-set envi-
ronments to effectively distinguish between known and un-



known emitters. However, these methods typically catego-
rize all unknown emitters into a single class, failing to fur-
ther differentiate them. In response to these challenges, this
study introduces a novel open-world Radio Frequency Fin-
gerprint Identification method, OpenRFI. Initially, we de-
velop a novel RFFI model, Roinformer, by integrating the
intrinsic properties of radio frequency fingerprints with ad-
vanced deep learning models and encoding techniques. This
model surpasses the benchmark Transformer (Vaswani et al.
2017) model in computational complexity and accuracy, val-
idated through supervised learning. Subsequently, we incor-
porate two novel data augmentation methods and pre-train
the Roinformer model using the self-supervised and semi-
supervised learning framework, SimCLR (Chen et al. 2020),
enabling it to learn latent features between different cate-
gories from unlabeled data. Ultimately, addressing the short-
comings of the OpenNCD (Liu et al. 2023) method, we in-
troduce instance-level similarity loss and prototype-group-
level local entropy regularization loss, constructing a more
robust open-world new class discovery framework, Open-
RFI, which achieves significant performance improvements
on the RFFI dataset.

The main contributions of this paper are summarized as
follows:
• This is the first instance of extending radio frequency

fingerprint identification from open-set to open-world
recognition, facilitating further classification of anoma-
lous emitters.

• We propose an efficient radio frequency fingerprint fea-
ture extraction model, Roinformer, incorporating RoPE
method into the Transformer-based architecture.

• We introduce two time-series augmentation methods
based on radio frequency fingerprints, which are ef-
fectively utilized within self-supervised and semi-
supervised learning frameworks.

• To mitigate the catastrophic decline in identification per-
formance for known emitters, we introduce instance-
level similarity loss and prototype-group-level local en-
tropy regularization methods, effectively preventing per-
formance degradation.

Related Work
Semi-supervised Learning. In many real-world scenarios,
acquiring a large amount of unlabeled data is relatively easy.
However, manually labelling this unlabeled data requires
specialized equipment and significant time investment, mak-
ing it costly. Semi-supervised learning can leverage a small
amount of labelled data along with a large amount of unla-
beled data, addressing the high cost of data labelling in su-
pervised learning and the inaccuracy of models in unsuper-
vised learning. Traditional semi-supervised learning meth-
ods (Li, Xiong, and Hoi 2021; Xie et al. 2020; Sohn et al.
2020; Berthelot et al. 2019; Guan et al. 2025) assume that the
labelled samples encompass all sample classes, which cor-
responds to a closed-set scenario. If unknown class samples
are mixed with the unlabeled data, these unexpected samples
will be misidentified as known classes, significantly affect-
ing the performance of semi-supervised learning.

Open-set Recognition. Open set recognition (Geng, Huang,
and Chen 2020; Shen et al. 2022; Xie et al. 2021; Huang
et al. 2024; Yu et al. 2020; Guo et al. 2020; Huang et al.
2021) treats all unknown classes in unlabeled samples as
anomalous, considering the new classes in the open set as
low-accuracy outliers to minimize their impact on training.
However, it cannot identify different categories within the
new samples. Specifically, research in the field of RF finger-
printing open set recognition (Shen et al. 2022; Xie et al.
2021; Huang et al. 2024; Robinson and Kuzdeba 2021) has
made notable progress and achieved significant results. In
(Xie et al. 2021), the approach extends from a closed-set
scenario, where the device set remains constant, to the dis-
crimination of RF fingerprints from unknown devices. In
(Huang et al. 2024), Fourier-based synchrosqueezing trans-
form (FSST) and supervised contrastive learning (SCL) are
employed to generate more concentrated and distinctive RF
fingerprints, reducing open space risk and mitigating the im-
pact of channel noise. In (Robinson and Kuzdeba 2021),
the authors propose extensions to the Resampling in Fre-
quency and Time Network (RiftNet) model, enabling simul-
taneous novel device detection and RF fingerprinting. Al-
though these methods can detect and reject the presence of
illegal devices, they cannot classify the illegal devices.
Open-world Recognition. Open-world recognition aims to
address the limitations of traditional closed-world models
by utilizing an additional, albeit different, labeled set to
cluster new, unlabeled classes. In image recognition, ORCA
(Cao, Brbic, and Leskovec 2022) uses an uncertainty-aware
adaptive margin mechanism to avoid bias towards known
classes; OpenNCD (Liu et al. 2023) employs a dual-level
contrastive learning method that constructs prototypes and
prototype groups to calculate contrastive loss from both
group and prototype levels. Notably, OpenNCD’s setup only
considers 10% of the samples from known classes as labeled
data, aligning more closely with real-world scenarios. To
tackle the catastrophic forgetting problem of known classes
in open-world recognition, LegoGCD (Cao et al. 2024) ef-
fectively mitigates this issue using a simple entropy regu-
larization method called LER. However, RF fingerprint sig-
nals differ from images, thus requiring distinct open-world
recognition methods tailored for RF fingerprinting.

Method
Problem Definition
We divide the entire dataset into two parts: Dl and Du.
Dl = {(xi, yi)}Mi=1 ∈ X × Yl represents the labeled por-
tion, where Yl is the set of classes for the labeled samples.
Du = {(xi, yi)}Ni=1 ∈ X ×Yu represents the unlabeled por-
tion, where Yu is the set of classes for the unlabeled samples.
In the open-world setting, the unlabeled samples may con-
tain novel classes that are not present in the labeled samples,
meaning Yl ⊆ Yu. The set of novel classes is denoted as
Ynovel = Yu/Yl. In our method, the total number of classes
|Yu| is treated as prior knowledge, consistent with previous
works (Zhong et al. 2021; Fini et al. 2021; Han et al. 2021;
Zhao and Han 2021; Cao et al. 2024).



Multi-head
ProbSparse
Self-attention

Multi-head
ProbSparse
Self-attention

RoPE

AWGN PERMUTATION

ℒ!"#$%&'

Figure 2: Training of the Roinformer model using the self-
supervised learning framework SimCLR. In Roinformer,
each Attention operation is preceded by RoPE encoding.
The original RF signals undergo two types of data augmen-
tation: AWGN and PERMUTATION, resulting in two posi-
tive samples with the same label. For simplicity, some com-
ponents of SimCLR are omitted.

Backbone
In this section, we propose a novel RF fingerprint classi-
fication model named Roinformer. The Roinformer model
adopts the encoder architecture of Informer (Zhou et al.
2021), an advanced time-series forecasting model based on
the Transformer (Vaswani et al. 2017) architecture. Informer
is designed to address the inefficiencies and accuracy is-
sues of traditional time-series forecasting methods when
handling long sequence data. By optimizing and improv-
ing upon these challenges, the Informer encoder serves as
a powerful feature extractor, providing robust support for
open-world recognition. Additionally, recognizing that sig-
nal components near the signal segments are more critical
than those in other positions, we replace the traditional sinu-
soidal position encoding with Rotary Position Embedding
(RoPE) (Su et al. 2024). RoPE introduces relative positional
information of signal segments into the self-attention matrix,
offering an advantage over conventional sinusoidal encoding
in capturing the importance of signal segments. In summary,
Roinformer combines the Informer encoder and RoPE to en-
hance feature extraction and positional awareness, achieving
superior RF fingerprint classification performance.

Pre-trained Model
The pre-trained Roinformer model is trained using the un-
supervised SimCLR framework (Chen et al. 2020). Sim-
CLR is a simple contrastive learning framework for learning
representation, which simplifies existing contrastive self-
supervised learning algorithms by eliminating the need for
specialized architectures or memory banks. Since SimCLR
is originally designed for images, specific data augmentation
methods for RF fingerprints (RFF) are needed. Here, we in-
troduce two effective data augmentation methods for RFFI:

• AWGN (Additive White Gaussian Noise): AWGN is an
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Figure 3: Framework of the proposed OpenRFI method. We
incorporate instance-level similarity loss Linstance into fea-
tures extracted by the encoder to improve recognition accu-
racy for known class samples. Next, we modify and obtain
a new prototype-level similarity loss L′

proto. Finally, we in-
troduce prototype group-level similarity loss Lentropy to al-
leviate catastrophic forgetting of known class samples. The
training process continuously optimizes prototype represen-
tations, resulting in a more reliable prototype distribution.

unavoidable factor in measurement environments, and it
inevitably interferes with the signals received by the re-
ceiver. By adding slight noise to the signal during aug-
mentation, we simulate real-world conditions, enabling
the model to learn the impact of AWGN on RFFI.

• PERMUTATION: This method randomly segments each
signal into no more than 10 fragments on the time scale,
rearranges them, and recombines them into the original
shape (Qian, Tian, and Miao 2022). This enables the
model to learn different views of signal representations.
After permutation, the signal is further augmented using
AWGN. Despite reordering, unique losses from emitter
defects remain, as these losses are device-specific. Re-
ordering also increases signal diversity. Thus, permuta-
tion is an effective data augmentation method for RFFI.

We utilize the self-supervised learning framework Sim-
CLR to obtain a pre-trained version of Roinformer. The
training process is illustrated in Fig. 2. This pre-trained
model is used for open-world recognition of emitters in
the OpenRFI framework. Experimental results show that al-
lowing all layers of the pre-trained model to be fine-tuned
yields better open-world recognition performance compared
to fine-tuning only the final few layers. Therefore, in our ap-
proach, every layer of the pre-trained model is fine-tunable.

OpenRFI
OpenRFI is an open-world recognition framework for RFFI,
based on an advanced modification of OpenNCD (Liu et al.
2023). The open-world recognition process is as follows:
To perform an initial coarse partitioning of the sample fea-
tures, we first predefine a set of trainable prototypes C =
{c1, . . . , cK}, where each prototype is represented as a vec-
tor of the same dimension, and the number of prototypes K
is predefined, with K ≫ |Yu|. Next, based on the prototype



similarity matrix, the prototypes are further clustered into
coarse-grained prototype groups, with each group being at
the same hierarchical level as the final class. The number of
clusters corresponds to the size of |Yu|. Finally, the category
of each sample is predicted based on the prototype group
to which it is most likely to belong. During the training pro-
cess, the representation of the prototypes is continuously op-
timized to achieve better prediction results.

The entire open-world recognition process is divided into
three stages. The first stage is the Warming stage, where the
initial prototype representations are constructed, and some
objective functions are excluded from the training. The sec-
ond stage is the Grouping stage. In this stage, OpenRFI gen-
erates a prototype similarity matrix, clusters the prototypes
into prototype groups, and obtains |Yu| different groups, and
this stage also excludes some objective functions from the
calculations. The final stage is the Fixing stage, where all
objective functions are included in the training.

OpenNCD’s loss function consists of four components:

LOpenNCD = Lproto + Lgroup + λ1Lreg + λ2Lce, (1)

where the first two terms represent the prototype-level simi-
larity loss Lproto and the group-level similarity loss Lgroup.
Lreg is the regularization loss at the prototype level, and Lce

is the cross-entropy loss for labeled samples.
Samples x and x′ are positive pairs generated through

data augmentation.x and x′ are processed by the feature ex-
tractor fθ to generate instance features z and z′.The distri-
bution probability from instance z to the prototype set C is
represented by p ∈ R(m+n)×K . The distribution probability
of instance z to the k-th prototype ck is given by:

p(k) =
exp

(
1
τ z · c

⊤
k

)∑
ck′∈C exp

(
1
τ z · c

⊤
k′

) , (2)

where τ is the temperature parameter, and both z and c have
undergone l2-normalization. Similarly, the distribution prob-
ability of the positive instance z′ to the k-th prototype ck is
denoted as p′(k).

The prototype group Cg is hierarchically aligned with the
classes, where Cg ⊆ C. Prototype groups have no shared
prototypes. The distribution probability of instance feature
z to prototype group Cg is denoted as q(g):

q(g) =

∑
ck∈Cg

exp
(
1
τ z · c

⊤
k

)∑
ck′∈C exp

(
1
τ z · c

⊤
k′

) , (3)

where the distribution probability of the positive instance
feature z′ to the prototype group Cg is denoted as q′(g).

The prototype-level similarity loss Lproto is specifically
formulated as follows:

Lproto = − 1

m+ n

m+n∑
i

log⟨pi,p
′
i⟩, (4)

where ⟨·⟩ denotes the Euclidean distance, m and n are
the numbers of labeled and unlabeled samples in a train-
ing batch, respectively. Lproto is calculated for each batch
to update the encoder and prototypes. Treating p and p′

as pseudo-labels for cross-entropy loss better measures the
similarity between the distributions, whereas Euclidean dis-
tance performs poorly. Thus, we modify Lproto as follows:

L′
proto = − 1

m+ n

m+n∑
i

(p′
i logpi + pi logp

′
i), (5)

where L′
proto is also calculated for each training batch to

update the encoder and prototypes.
To further enhance fine-grained contrastive learning at

the instance level and reduce the adverse effects of pre-
trained models on open-world recognition, we introduce the
instance-level similarity loss Linstance. Here, the InfoNCE
loss is applied. The Linstance is defined as follows:

Linstance = − 1

2B

B∑
i=1

log exp(
sim(zi,z

′
i)

τs
)∑2B

j=1 1[j ̸=i] exp(
sim(zi,zj)

τs
)

+ log
exp(

sim(z′
i,zi)

τs
)∑2B

j=1 1[j ̸=i] exp(
sim(z′

i,zj)

τs
)

 ,

(6)
where 1[j ̸=i] ∈ {0, 1} is an indicator function, sim(·, ·) de-
notes the cosine similarity function, and τs is the tempera-
ture parameter. B = m+ n, where m and n are the number
of labeled and unlabeled samples in a training batch, respec-
tively. Unlike unsupervised learning, for a labeled sample in
a training batch, the instance feature z′i of its positive sam-
ple is replaced by a different augmented view z′i of the same
label sample from the same batch. By this approach, we can
inject information from labeled samples, thereby improving
the accuracy of known class samples.

With the above modifications, OpenRFI has shown a
significant improvement in open-world recognition accu-
racy. However, an issue of catastrophic forgetting of known
classes has emerged. In (Cao et al. 2024), the authors use
local entropy regularization on unlabeled samples with high
confidence in being identified as known classes to optimize
the probability distribution of these samples. However, in
the context of RFF data, this approach can also lead to a de-
crease in the accuracy of unknown class samples.To address
this issue, we propose a novel local entropy regularization
loss function Lentropy. The function’s impact will be ana-
lyzed in the experimental section.

The specific calculation process is as follows: for
a training batch B containing m labeled samples and
n unlabeled samples, define a binary mask Umask =
[u1,u2, . . . ,um+n] ∈ [0, 1]m+n to indicate whether a sam-
ple is unlabeled. If sample xi is unlabeled, then the corre-
sponding ui = 1; otherwise, ui = 0.

Next, we define a binary mask Wmask =
[w1,w2, . . . ,wm+n] ∈ [0, 1]m+n to indicate whether
a sample belongs to a specific prototype group with high
confidence. Specifically, for sample xi, the prototype group
distribution probability is qi = [q1, q2, . . . , q|Yu|].For the
elements in Wmask, we have:



wi = 1(max(qi) ≥ γ), (7)

where γ is the threshold for determining whether xi is a
high-confidence sample.

Since Lce aligns the predicted labels of known samples
with true labels, we can directly use the OpenRFI model’s
output to determine whether a sample belongs to a known
or unknown class. Therefore, a binary mask Ymask =
[y1,y2, . . . ,ym+n] ∈ [0, 1]m+n is defined, where:

yi = 1(argmax(qi) ̸∈ Yl). (8)

Finally, a binary mask Smask = [s1, s2, . . . , sm+n] ∈
[0, 1]m+n is used to indicate whether a sample is considered
a high-confidence unknown sample in the unlabeled set. The
calculation process is as follows:

Smask = Umask ⊙Wmask ⊙ Ymask. (9)

where ⊙ denotes the element-wise multiplication operation.
For a training batch, let the number of unlabeled samples

that are identified as high-confidence unknown samples be
b. The average prototype group distribution probability of
these samples is denoted as:

qgroup =
1

b

∑
i

siqi. (10)

We design a prior distribution qprior to encourage the pro-
totype group is uniformly distributed to achieve the purpose
of maximizing entropy:

qprior = [q1,q2, . . . ,q|Yu|], ∀qi =
1

|Yu|
. (11)

We minimize the Kullback-Leibler (KL) divergence to re-
duce the difference between the two distributions:

Lentropy = KL(qgroup ∥ qprior). (12)

Since the regularization loss Lentropy requires a certain
level of prototype representation to be effective, it is only
applied during the Fixing stage of model training.

In summary, the overall objective function of OpenRFI is
as follows:

LOpenRFI = L′
proto + Lgroup + λ1Lreg + λ2Lce

+ Linstance + λ3Lentropy

= L′
OpenNCD + Linstance + λ3Lentropy.

(13)

Experiments
Dataset
To validate the effectiveness of Roinformer, we use a 32-
class RF fingerprint dataset for supervised learning. The
dataset contains approximately 155,000 samples, with about
124,000 samples in the training set, and roughly 15,000 sam-
ples each in the validation and test sets.

Dataset RFF UCIHAR SHAR
Known classes 5 3 8
Total classes 10 6 17

Labeled samples 2.3k 0.5k 0.5k
Unlabeled samples 41k 9.6k 7.7k

Table 1: Datasets used in open-world recognition. Known
classes correspond to |Yl|, total classes correspond to |Yu|,
labeled samples correspond to |Dl|, unlabeled samples cor-
respond to |Du|.

Following the setup used for the CIFAR-10 in OpenNCD
(Liu et al. 2023), we randomly select 10 classes from the
32-class RFF dataset. Half of these classes are designated
as known classes, with 10% of the samples from the known
classes labeled, while the remaining samples are unlabeled.
Additionally, to verify the generalization of our open-world
method, we also test OpenRFI’s performance on the UCI-
HAR dataset, which contains 6 classes of human activity
recognition data, and the SHAR dataset, which contains
17 classes of human activity recognition data. The labeling
rules for the labeled and unlabeled samples in these datasets
are consistent with those used for the 10-class RFF dataset.
The distribution of samples in the datasets used for open-
world recognition is shown in Table 1.

Implementation Details
When using the self-supervised learning framework Sim-
CLR (Chen et al. 2020) to pre-train a model on a dataset,
we split all data into training, validation, and test sets in a
6:2:2 ratio. During training, we implement early stopping to
prevent overfitting. The contrastive loss on the validation set
is monitored as the key indicator. At the end of each epoch,
we calculate the validation loss. If the loss does not decrease
for 50 consecutive epochs, early stopping is triggered.

In the OpenRFI setting, the number of prototypes is gen-
erally much larger than the number of actual classes. Here,
we set the number of prototypes to be ten times the number
of known classes. The dimension of the instance features
obtained from the pre-trained model is set to 32. The tem-
perature parameter τs is set to 0.05. The batch size is set to
128, and the learning rate for the Adam optimizer is 0.002.

Performance of the Feature Extractor
We analyze the performance of Roinformer using a super-
vised learning approach. Theoretically, Roinformer has a
time and space complexity of O(N logN), which is lower
than that of Transformer (O(N2)), precisely because it
adopts the Informer model. As shown in Table 2, Roinformer
achieves better results with fewer parameters and lower time
complexity.

Additionally, the incorporation of RoPE (Su et al. 2024)
significantly improves model performance. RoPE does not
add model parameters or change the time and space com-
plexity of the model, yet it markedly enhances the per-
formance of both Transformer and Roinformer, speeding
up Roinformer’s convergence (as can be seen from the
Max epoch parameter). Furthermore, from an application



Model Acc Max epoch Parameters FLOPs
Transformer 52.72 57 80.96 25.82
Transformer (w/ RoPE) 94.99 82 80.96 25.82
Informer 61.19 165 51.21 13.98
Roinformer 96.64 57 51.21 13.98

Table 2: Performance comparison and analysis of feature ex-
tractors using supervised learning on 32-class RFF dataset.
Acc: Accuracy on the test set, Max epoch: The number
of epochs corresponding to model convergence, Parame-
ters (M×10−2): The number of parameters, which reflects
the model’s spatial complexity, FLOPs (G×10−3): Floating
point operations, which reflect the model’s time complexity.

perspective, RoPE reduces the result of dot products be-
tween Q and distant K positions, effectively applying a win-
dowed approach to the self-attention matrix. Because RoPE
can enhance the efficiency of the model, it allows the model
to quickly learn the ”window” structure that the attention
mechanism needs to focus on during training, saving train-
ing time. Conversely, this also demonstrates that for RF fin-
gerprinting, the signal segments close to the current position
are more important than those further away.

Comparison with the Baselines
In Table 3, we compare the performance of OpenRFI,
OpenNCD (Liu et al. 2023), and ORCA (Cao, Brbic, and
Leskovec 2022) methods on open-world recognition across
three datasets. For all three methods, we use the total num-
ber of classes as the prior knowledge input to the model.
For the k-means algorithm (MacQueen et al. 1967), we di-
rectly cluster the instance features output by the pre-trained
model. Since k-means cannot distinguish between known
and unknown classes, we treat the top |Yl| predicted classes
as known and the remaining classes as unknown.As the re-
sults show, our method consistently achieves the best perfor-
mance across the three datasets.

Novel Local Entropy Regularization
LegoGCD (Cao et al. 2024) discovers and mitigates the is-
sue of catastrophic forgetting in known class samples within
open-world recognition. In the LegoGCD setup, its local
regularization primarily focuses on samples that are highly
confident to be known class samples. The difference is that
we apply local entropy regularization to samples that are
highly confident to be unknown classes. In Fig. 4, we an-
alyze the effect of Lentropy in three scenarios: when applied
to samples that are highly confident to be unknown, when
applied to samples that are highly confident to be known,
and when not applied at all. Fig. 4 shows the accuracy of the
total unlabeled samples, known class samples, and unknown
class samples over 160 epochs.

As shown in Fig. 4(b), Lentropy significantly alleviates
the catastrophic forgetting issue in known class samples,
whether applied to samples that are highly confident to be
unknown or highly confident to be known. Furthermore, it
can be analyzed that Lentropy optimizes the distribution of
known class samples mistakenly identified as unknown and

Figure 4: The effect of Lentropy when applied to samples
that are highly confident to be unknown classes, when ap-
plied to samples that are highly confident to be known
classes, and when not applied at all is shown over consec-
utive epochs. The results are represented by yellow (w/ ER
(Novel)), green (w/ ER (Seen)), and cyan (w/o ER) lines,
where ER represents Lentropy. (a), (b) and (c) show the total
accuracy, known class accuracy, and unknown class accu-
racy. The results were obtained from the RFF dataset.

known class samples mistakenly identified as other known
classes. From both perspectives, Lentropy helps mitigate the
catastrophic forgetting issue in known class samples.

However, as shown in Fig. 4(c), if local regularization is
applied to samples that are highly confident to be known
classes, it increases the number of samples mistakenly iden-
tified as unknown classes, thereby increasing the difficulty
of recognizing unknown classes and leading to a decrease
in the accuracy of unknown classes. This impact is more
destructive than the effect of local regularization applied to
samples that are highly confident to be unknown on the ac-
curacy of known classes.

Additionally, because the identification accuracy of
known class samples is relatively high, applying local reg-
ularization to samples that are highly confident to be known
classes can lead to a ”cliff-like” drop in the accuracy of
known class samples. This phenomenon is clearly observed
in Fig. 5, where, in our setup, Lentropy begins to take effect
starting from the 30th epoch.
Ablation Experiment
Impact of Objective Loss Functions. Table 4 analyzes the
contributions of our newly added loss functions, including
instance-level similarity loss Linstance, local entropy reg-
ularization at the prototype level Lentropy , and the modi-
fied prototype-level similarity loss L′

proto. To investigate the
importance of these functions, we conduct ablation stud-
ies by individually removing each item, removing any two
items, or removing all the items from the objective func-
tion. The results show that all the added objective functions
contribute to improving the accuracy of the model. Specifi-
cally, Linstance has the most significant effect, Lentropy ef-
fectively prevents catastrophic forgetting for known classes,
L′
proto markedly improves accuracy for unknown classes.



Methods
RFF UCIHAR SHAR

Seen Novel All Seen Novel All Seen Novel All
k-means* 16.67 16.39 15.54 45.52 56.92 50.71 24.53 18.54 20.66
ORCA 9.47 25.30 16.11 97.93 86.87 91.94 53.03 17.88 31.06

OpenNCD 55.72 44.19 47.99 98.00 84.09 90.52 53.08 20.40 36.99

OpenRFI 85.55 63.58 73.95 98.94 88.09 93.11 59.69 24.08 40.46
∆ 0.61 0.36 0.48 0.05 0.08 0.06 2.87 1.27 0.88

Table 3: Open-world recognition results on the RFF, UCIHAR, and SHAR datasets. An asterisk (*) indicates that the accuracy
of known classes, unknown classes, and overall accuracy is calculated using the Hungarian algorithm; otherwise, the accuracy
of known classes is calculated using the conventional method. Bold values indicate the results of our method.

Figure 5: ”Cliff-like” accuracy drop occurs when Lentropy

is applied to samples highly confident as known classes. It
shows accuracy over the first 40 epochs when Lentropy is
applied to unknown classes, known classes, or not applied,
represented by yellow, green, and cyan lines, respectively.

Impact of the Confidence Threshold. Table 5 shows the
ablation study on the confidence threshold γ with the weight
λ3 = 45 in Lentropy. We test the performance of OpenRFI
with γ values ranging from 0.5 to 0.9. The results indicate
that as γ increases, all three accuracy metrics exhibit an up-
ward trend followed by a decline. The highest known class
accuracy of 90.23% occurs at γ = 0.6, while the highest un-
known class accuracy and overall accuracy of 63.58% and
73.95%, respectively, occur at γ = 0.7. Since open-world
recognition places more emphasis on the accuracy of un-
known classes, We choose γ = 0.7 as the optimal value and
set it as the default.

Impact of Novel Local Entropy Regularization Weight.
Table 6 shows the results of our ablation study on the weight
λ3. We tested λ3 values from 30 to 50, assessing the perfor-
mance of OpenRFI. The results show that as λ3 increases,
all three accuracy rates first increase and then decrease. The
best overall accuracy and known class accuracy are achieved
at λ3 = 40, with maximum values of 89.51% and 74.52%,
respectively. The best unknown class accuracy is achieved at
λ3 = 45, with a maximum value of 63.58%. Similarly, since
our study focuses more on the accuracy of unknown classes,
we chose λ3 = 45 as the final weight for OpenRFI in our
open-world recognition results.

Methods Seen Novel All
w/o Linstance 21.51 39.96 21.10
w/o Lentropy 57.80 60.50 59.23
w/o L′

proto 89.48 38.41 58.99
w/o L′

proto + Linstance 35.79 37.31 19.70
w/o L′

proto + Lentropy 73.88 43.94 58.08
w/o Linstance + Lentropy 22.02 40.23 21.24

OpenNCD 55.72 44.19 47.99
OpenRFI 85.55 63.58 73.95

Table 4: Analysis of the fusion of novel objective functions.
We report results on the 10-class RFF dataset, where 50%
of the classes are known, with 10% of the samples from
the known classes labeled, and the remaining samples un-
labeled. The results without the ablation experiment are in-
dicated in bold.

γ Seen Novel All
0.5 87.85 48.15 62.06
0.6 90.23 56.27 72.30
0.7 85.55 63.58 73.95
0.8 82.78 60.76 71.15
0.9 83.86 49.16 65.54

Table 5: Ablation study on
the confidence threshold
value conducted on 10-class
RFF dataset. Bold indicates
the best results. Underlined
indicates the selected value.

λ3 Seen Novel All
30 86.79 56.65 70.88
35 83.47 58.87 70.49
40 89.51 61.10 74.52
45 85.55 63.58 73.95
50 88.63 50.82 68.67

Table 6: Ablation study on
the novel local entropy reg-
ularization weight λ3 con-
ducted on the 10-class RFF
dataset. Bold indicates the
best results, and underlined
indicates the selected value.

Conclusion
In this paper, we implement an open-world recognition
method framework for radio frequency fingerprinting called
OpenRFI. To realize it, we develop the Roinformer model
for feature extraction, combining it with data augmentation
strategies like noise jittering and signal frame reordering
to create an effective pre-trained model. Additionally, we
incorporate an instance-level similarity loss into the origi-
nal objective function of the baseline, which effectively im-
proves the accuracy of known classes. In particular, to ad-
dress the catastrophic forgetting problem of known classes,
we introduce a novel local entropy regularization method
and profoundly analyze its mechanism, ultimately achieving
a better open-world recognition performance.
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